Robust Control of a High Precision 4-DOF Parallel Manipulator
نویسنده
چکیده
A model-based robust control design approach is considered for a novel direct-drive 4-DOF parallel manipulator aimed at high speed and high precision semiconductor packaging applications. An experimental identification method is proposed to determine the dynamic model of the manipulator and a robust feedback controller is designed in the frequency-domain using genetic algorithm. Experimental results demonstrate that the motion performance of the 4-DOF parallel manipulator including positioning accuracy and steady-state error is improved significantly when compared with traditional XY, Z and θ motion stages. This shows that the proposed 4-DOF parallel manipulator provides a superior alternative to the traditional motion stages for high-precision motion.
منابع مشابه
Designing Robust Finite-Time Nonlinear Torques for a n-DOF Robot Manipulator with Uncertainties, Sector and Dead-Zone Input Nonlinearities
In this paper, a complete dynamical model is presented for an uncertain -DOF robot manipulator containing description of sector and dead-zone input nonlinearities. Next, robust finite-time tracking problem of desired trajectories is declared and formulated for the aforementioned robot manipulator. By defining innovative nonlinear sliding manifolds and developing the nonsingular terminal sliding...
متن کاملANFIS+PID Hybrid Controller Design for Controlling of a 6-DOF Robot Manipulator and its Error Convergence Analysis
In this paper, an ANFIS+PID hybrid control policy has been addressed to control a 6-degree-of freedom (6-DOF) robotic manipulator. Then its error convergence has been also evaluated. The ability to formulate and estimate the system uncertainties and disturbances along with system dynamics and rejecting the disturbances effect are some advantages of the proposed method in comparing with the co...
متن کاملDesign and Kinematic Analysis of a 4-DOF Serial-Parallel Manipulator for a Driving Simulator
This paper presents the kinematic analysis and the development of a 4-degree-of-freedom serial-parallel mechanism for large commercial vehicle driving simulators. The degrees of freedom are selected according to the target maneuvers and the structure of human motion perception organs. Several kinematic properties of parallel part of the mechanism under study are investigated, including the inve...
متن کامل3-RPS Parallel Manipulator Dynamical Modelling and Control Based on SMC and FL Methods
In this paper, a dynamical model-based SMC (Sliding Mode Control) is proposed fortrajectory tracking of a 3-RPS (Revolute, Prismatic, Spherical) parallel manipulator. With ignoring smallinertial effects of all legs and joints compared with those of the end-effector of 3-RPS, the dynamical model ofthe manipulator is developed based on Lagrange method. By removing the unknown Lagrange multipliers...
متن کاملKinematic and Dynamic Analysis of Tripteron, an Over-constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach
In this research, as the main contribution, a comprehensive study is carried out on the mathematical modeling and analysis of the inverse kinematics and dynamics of an over-constraint three translational degree-of-freedom parallel manipulator. Due to the inconsistency between the number of equations and unknowns, the problem of obtaining the constraint forces and torques of an over-constraint m...
متن کامل